

EDUCATION

•SISSA, Trieste, Italy PhD, Statistical Physics	2024-
•Weizmann Institute of Science, Rehovot, Israel	<i>2021-2024</i>
MSc Physics	Percentage: 93.5
•Indian Institute of Technology Bombay, Mumbai, India	<i>2018-2021</i>
MSc Energy Science and Engineering	CPI: 9.42
•Loyola College, Chennai, India	<i>2015-2018</i>
BSc Physics	CGPA: 9.09

Research Experience

•Weizmann Institute of Science (WIS)

Masters Project under the supervision of Prof. Yosef Nir - Studied the implications of Higgs-related measurements at the LHC on various BSM frameworks

•Indian Institute of Technology Bombay (IITB)

Masters Project under the supervision of Prof. Karthik Sasihithlu and Prof. M. P. Gururajan

- Conducted literature survey of near-field heat transfer and studied its mechanism
- Performed molecular dynamics simulation of near-field heat transfer across two nanospheres using LAMMPS

TECHNICAL SKILLS AND INTERESTS

Languages (Proficient): English, Tamil Languages (Less proficient): German, Telugu Software: Python, Julia, LAMMPS, Mathematica, LaTeX, Git **Areas of Interest**: Theoretical physics (Field theory), Tensor networks, Quantum computing

PUBLICATIONS

1. Y. Nir and P. P. Udhayashankar, Lessons from ATLAS and CMS measurements of Higgs boson decays to second generation fermions, JHEP 06 (2024) 049 [arXiv:2404.16545 [hep-ph]]

ADVANCED COURSES TAKEN

•Theoretical Condensed Matter Physics Instructor: Prof. Hridis Kumar Pal - Second quantization, Interacting electron gas, Superconductivity, Magnetism •Statistical physics 1 at WIS Instructor: Prof. Oren Raz - Equilibrium statistical physics: Phase transitions and critical phenomena, Ising type models; Analytical and numerical methods, renormalization group approach; correlation functions - Spin Glass physics: mean-field models, the replica trick, replica symmetry breaking •Quantum field theory 1 at WIS Instructor: Prof. Ofer Aharony - Perturbation theory and Feynman diagrams from Path Integrals (scalars and fermions), perturbative regularization and renormalization, optical theorem and the LSZ reduction formula, Renormalization group - QED, gauge fixing and the Faddeev-Popov procedure, Ward Identities, non-Abelian gauge theories - Non-perturbative field theory: QCD (qualitative). 3d QED, instantons and confinement - Symmetries in QFT, Goldstone's theorem, renormalization and symmetry, the Higgs mechanism (classical and quantum)

•Elementary particles 1

Instructor: Prof. Yosef Nir

- The course followed the book "The Standard Model: From Fundamental Symmetries to Experimental Tests authored by Yuval Grossman and Yossi Nir"

2022-

2020-2021

at IITB

at WIS

•General relativity	at WIS
Instructor: Prof. Ulf Leonhardt	
– Mathematics required for GR, Einstein equations, Gravitational waves, Black holes, elementary cosmology	
•Practical Deep Learning for Science	at WIS
Instructor: Prof. Eilam Gross	
– Convolutional Neural Nets, Graph Neural Nets, Transformer, Diffusion	
•Supersymmetry (not yet graded)	$at \ WIS$
Instructor: Prof. Micha Berkooz	
– Supersymmetric QM, SUSY algebra and representations, SUSY in 4d, SUSY Gauge theories	
•Quantum field theory 2 (current semester)	$at \ WIS$
Instructor: Prof. Adam Schwimmer	
– The continuum limit	
– Lattice Gauge Theories	
– The Renormalization Group	

- Anomalies

Key Course Projects

•Accent modulation using cVAE architecture	$at \ WIS$
Course: Practical Deep Learning for Science	$1 \mathrm{month}$
– Learnt various audio processing features like STFT, Mel spectrogram, MFCCs etc.	
– Build a cVAE using pytorch modules in python	
- Used one hot encoding to switch between accents using audio features like MFCC and time-domain data	
– Dataset used: AccentDB - Core & Extended	
•Deep Learning with particle collider collision event	at WIS
Course: Experimental Projects	3 weeks
- Understood blocks of code developed by the group of Prof. Filam Gross	

- Understood blocks of code developed by the group of Prof. Eilam Gross
- Modified it to suit the goal of our project, i.e. to determine the fraction of charged and uncharged particles in a collider event

WORKSHOP & SCHOOLS

•Tri-Institute Summer School on Elementary Particles 2023 – Exposure to various aspects of particle physics. Topics in the summer school ranged from theoretical to experimental/observational aspects of particle physics: Underground experiments, cosmology and gravitational waves, to list a few. TEACHING ASSITANT DUTIES

•Quantum Mechanics 2	at WIS
TA duty: Grading problem sets	2024

References

•Prof. Yosef Nir

 $Department \ of \ Particle \ Physics \ & Strophysics,$

Weizmann Institute of Science

 Office: 303, Edna and K.B. Weissman Building of Physical Sciences, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot 7610001, Israel

J+972 8 934 3887

J+91 22 25769347

J+91 22 25767631
■ guru.mp@iitb.ac.in

✓ yosef.nir@weizmann.ac.il

✓ ksasihithlu@ese.iitb.ac.in

•Prof. Karthik Sasihithlu

Department of Energy Science and Engineering,

Indian Institute of Technology Bombay

 Office: 7th floor, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

•Prof. M. P. Gururajan

Department of Metallurgical Engineering and Materials Science,

Indian Institute of Technology Bombay

– Office: Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India